We study cocompact lattices with dense projections in a product $G_1 times G_2$ of locally compact groups and show, under the assumption that each $G_i$ is a closed subgroup of the automorphism group $Aut(T_i)$ of a regular tree satisfying certain local transitivity conditions, that such a lattice is contained in only finitely many discrete subgroups of $G_1 times G_2$.