Characterization of fluorescence collection optics integrated with a micro-fabricated surface electrode ion trap


الملخص بالإنكليزية

One of the outstanding challenges for ion trap quantum information processing is to accurately detect the states of many ions in a scalable fashion. In the particular case of surface traps, geometric constraints make imaging perpendicular to the surface appealing for light collection at multiple locations with minimal cross-talk. In this report we describe an experiment integrating Diffractive Optic Elements (DOEs) with surface electrode traps, connected through in-vacuum multi-mode fibers. The square DOEs reported here were all designed with solid angle collection efficiencies of 3.58%; with all losses included a detection efficiency of 0.388% (1.02% excluding the PMT loss) was measured with a single Ca+ ion. The presence of the DOE had minimal effect on the stability of the ion, both in temporal variation of stray electric fields and in motional heating rates.

تحميل البحث