Single particle fluctuations and directional correlations in driven hard sphere glasses


الملخص بالإنكليزية

Via event driven molecular dynamics simulations and experiments, we study the packing fraction and shear-rate dependence of single particle fluctuations and dynamic correlations in hard sphere glasses under shear. At packing fractions above the glass transition, correlations increase as shear rate decreases: the exponential tail in the distribution of single particle jumps broadens and dynamic four-point correlations increase. Interestingly, however, upon decreasing the packing fraction, a broadening of the exponential tail is also observed, while dynamic heterogeneity is shown to decrease. An explanation for this behavior is proposed in terms of a competition between shear and thermal fluctuations. Building upon our previous studies [Chikkadi et al, Europhys. Lett. (2012)], we further address the issue of anisotropy of the dynamic correlations.

تحميل البحث