The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling microscopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole doping (p) dependence of the quasiparticle interference pattern within a single Bi-based cuprate family, we observe a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting Tc. Surprisingly, this major reorganization of the systems underlying electronic structure has no effect on the smoothly evolving pseudogap.