After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex Cover. Here we consider the TREEWIDTH and PATHWIDTH problems parameterized by k, the size of a minimum vertex cover of the input graph. We show that the PATHWIDTH and TREEWIDTH can be computed in O*(3^k) time. This complements recent polynomial kernel results for TREEWIDTH and PATHWIDTH parameterized by the Vertex Cover.