We present a minimal motif model for transmembrane cell signaling. The model assumes signaling events taking place in spatially distributed nanoclusters regulated by a birth/death dynamics. The combination of these spatio-temporal aspects can be modulated to provide a robust and high-fidelity response behavior without invoking sophisticated modeling of the signaling process as a sequence of cascade reactions and fine-tuned parameters. Our results show that the fact that the distributed signaling events take place in nanoclusters with a finite lifetime regulated by local production is sufficient to obtain a robust and high-fidelity response.