We study the reactions $gammagammarightarrow pi^0pi^0$, $pi^+pi^-$, $K^0bar{K}^0$, $K^+K^-$, $eta eta$ and $pi^0eta$ based on a chiral Lagrangian with dynamical light vector mesons as formulated within the hadrogenesis conjecture. At present our chiral Lagrangian contains 5 unknown parameters that are relevant for the photon fusion reactions. They parameterize the strength of interaction terms involving two vector meson fields. These parameters are fitted to photon fusion data $gammagammarightarrow pi^0pi^0$, $pi^+pi^-, pi^0eta$ and to the decay $etarightarrowpi^0gammagamma$. In order to derive gauge invariant reaction amplitudes in the resonance region constraints from micro-causality and exact coupled-channel unitarity are used. Our results are in good agreement with the existing experimental data from threshold up to about 0.9 GeV for the two-pion final states. The $a_0$ meson in the $pi^0eta$ channel is dynamically generated and an accurate reproduction of the $gammagammarightarrow pi^0eta$ data is achieved up to 1.2 GeV. Based on our parameter sets we predict the $gammagammarightarrow $ $K^0bar{K}^0$, $K^+K^-$, $eta eta$ cross sections.