Coexistence of Two Sharp-Mode Couplings and Their Unusual Momentum Dependence in the Superconducting State of Bi2Sr2CaCu2O8+d Superconductor Revealed by Laser-Based Angle-Resolved Photoemission


الملخص بالإنكليزية

Super-high resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O8+d (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of an overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from $sim$40 meV near the antinodal region to $sim$70 meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high temperature superconductivity in cuprate superconductors.

تحميل البحث