Disorder effects on resonant tunneling transport in GaAs/(Ga,Mn)As heterostructures


الملخص بالإنكليزية

Recent experiments on resonant tunneling structures comprising (Ga,Mn)As quantum wells [Ohya et al., Nature Physics 7, 342 (2011)] have evoked a strong debate regarding their interpretation as resonant tunneling features and the near absences of ferromagnetic order observed in these structures. Here, we present a related theoretical study of a GaAs/(Ga,Mn)As double barrier structure based on a Greens function approach, studying the self-consistent interplay between ferromagnetic order, structural defects (disorder), and the hole tunnel current under conditions similar to those in experiment. We show that disorder has a strong influence on the current-voltage characteristics in efficiently reducing or even washing out negative differential conductance, offering an explanation for the experimental results. We find that for the Be lead doping levels used in experiment the resulting spin density polarization in the quantum well is too small to produce a sizable exchange splitting.

تحميل البحث