On the algebraic K-theory of truncated polynomial algebras in several variables


الملخص بالإنكليزية

We consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, K(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)). This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positive characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on N^n. If the characteristic of k does not divide any of the a_i we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k=Z. To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write TC(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)) as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand. Updated: This is a substantial revision. We corrected several errors in the description of the Witt vectors on a truncation set on N^n and modified the key proofs accordingly. We also replaces several topological statement with purely algebraic ones. Most arguments have been reworked and streamlined.

تحميل البحث