Information Complexity versus Corruption and Applications to Orthogonality and Gap-Hamming


الملخص بالإنكليزية

Three decades of research in communication complexity have led to the invention of a number of techniques to lower bound randomized communication complexity. The majority of these techniques involve properties of large submatrices (rectangles) of the truth-table matrix defining a communication problem. The only technique that does not quite fit is information complexity, which has been investigated over the last decade. Here, we connect information complexity to one of the most powerful rectangular techniques: the recently-introduced smooth corruption (or smooth rectangle) bound. We show that the former subsumes the latter under rectangular input distributions. We conjecture that this subsumption holds more generally, under arbitrary distributions, which would resolve the long-standing direct sum question for randomized communication. As an application, we obtain an optimal $Omega(n)$ lower bound on the information complexity---under the {em uniform distribution}---of the so-called orthogonality problem (ORT), which is in turn closely related to the much-studied Gap-Hamming-Distance (GHD). The proof of this bound is along the lines of recent communication lower bounds for GHD, but we encounter a surprising amount of additional technical detail.

تحميل البحث