Cooperative Game-Theoretic Approach to Spectrum Sharing in Cognitive Radios


الملخص بالإنكليزية

In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperatively detect the primary user (PU) activity for identifying and accessing unoccupied spectrum bands. The games are designed to be balanced and super-additive so that resource allocation is possible and provides SUs with an incentive to cooperate and form the grand coalition. The characteristic function of the game is derived based on the worths of SUs, calculated according to the amount of work done for the coalition in terms of reduction in uncertainty about PU activity. According to her worth in the coalition, each SU gets a pay-off that is computed using various one-point solutions such as Shapley value, tau-value and Nucleolus. Depending upon their data rate requirements for transmission, SUs use the earned pay-off to bid for idle channels through a socially optimal Vickrey-Clarke-Groves (VCG) auction mechanism. Simulation results show that, in comparison with other resource allocation models, the proposed cooperative game-theoretic model provides the best balance between fairness, cooperation and performance in terms of data rates achieved by each SU.

تحميل البحث