A computationally efficacious free-energy functional for studies of inhomogeneous liquid water


الملخص بالإنكليزية

We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields a computationally efficient free-energy functional for inhomogeneous water which captures short-ranged correlations, cavitation energies and, with suitable long-range corrections, the non-linear dielectric response of water, making it an excellent candidate for studies of mesoscale water and for use in ab initio solvation methods.

تحميل البحث