We immerse single layer graphene spin valves into purified water for a short duration (<1 min) and investigate the effect on spin transport. Following water immersion, we observe an enhancement in nonlocal magnetoresistance. Additionally, the enhancement of spin signal is correlated with an increase in junction resistance, which produces an increase in spin injection efficiency. This study provides a simple way to improve the signal magnitude and establishes the robustness of graphene spin valves to water exposure, which enables future studies involving chemical functionalization in aqueous solution.