We consider the pinning of superfluid (neutron) vortices to magnetic fluxtubes associated with a type II (proton) superconductor in neutron star cores. We demonstrate that core pinning affects the spin-down of the system significantly, and discuss implications for regular radio pulsars and magnetars. We find that magnetars are likely to be in the pinning regime, while most radio pulsars are not. This suggests that the currently inferred magnetic field for magnetars may be overestimated. We also obtain a new timescale for the magnetic field evolution which could be associated with the observed activity in magnetars, provided that the field has a strong toroidal component.