We have analyzed the spatial distribution of galaxies from the release of the Sloan Digital Sky Survey of galactic redshifts (SDSS DR7), applying the complete correlation function (conditional density), two-point conditional density (cylinder), and radial density methods. Our analysis demonstrates that the conditional density has a power-law form for scales lengths 0.5-30 Mpc/h, with the power-law corresponding to the fractal dimension D = 2.2+-0.2; for scale lengths in excess of 30 Mpc/h, it enters an essentially flat regime, as is expected for a uniform distribution of galaxies. However, in the analysis applying the cylinder method, the power-law character with D = 2.0+-0.3 persists to scale lengths of 70 Mpc/h. The radial density method reveals inhomogeneities in the spatial distribution of galaxies on scales of 200 Mpc/h with a density contrast of two, confirming that translation invariance is violated in the distribution of galaxies to 300 Mpc/h, with the sampling depth of the SDSS galaxies being 600 Mpc/h.