We investigate the electronic transport properties of unbiased and biased bilayer graphene nanoribbon in n-p and n-n junctions subject to a perpendicular magnetic field. Using the non-equilibrium Greens function method and the Landauer-B{u}ttiker formalism, the conductance is studied for the cases of clean, on-site, and edge disordered bilayer graphene. We show that the lowest Hall plateau remains unchanged in the presence of disorder, whereas asymmetry destroys both the plateaus and conductance quantization. In addition, we show that disorder induces an enhancement of the conductance in the n-p region in the presence of magnetic fields. Finally, we show that the equilibration of quantum Hall edge states between distinctively doped regions causes Hall plateaus to appear in the regime of complete mode mixing.