We consider the 2D inviscid incompressible irrotational infinite depth water wave problem neglecting surface tension. Given wave packet initial data, we show that the modulation of the solution is a profile traveling at group velocity and governed by a focusing cubic nonlinear Schrodinger equation, with rigorous error estimates in Sobolev spaces. As a consequence, we establish existence of solutions of the water wave problem in Sobolev spaces for times in the NLS regime provided the initial data is suitably close to a wave packet of sufficiently small amplitude in Sobolev spaces.