Spin Nutation Induced by Atomic Motion in a Magnetic Lattice


الملخص بالإنكليزية

An atom moving in a spatially periodic field experiences a temporary periodic perturbation and undergoes a resonance transition between atomic internal states when the transition frequency is equal to the atomic velocity divided by the field period. We demonstrated that spin nutation was induced by this resonant transition in a polarized rubidium (Rb) atomic beam passing through a magnetic lattice. The lattice was produced by current flowing through an array of parallel wires crossing the beam. This array structure, reminiscent of a multiwire chamber for particle detection, allowed the Rb beam to pass through the lattice at a variety of incident angles. The dephasing of spin nutation was reduced by varying the incident angle.

تحميل البحث