Counting defects with the two-point correlator


الملخص بالإنكليزية

We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z_2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form as a function of k/n, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).

تحميل البحث