We analyze gene co-expression network under the random matrix theory framework. The nearest neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range, and deviates after wards. Eigenvector analysis of the network using inverse participation ratio (IPR) suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets; (A) The non-degenerate part that follows RMT. (B) The non-degenerate part, at both ends and at intermediate eigenvalues, which deviate from RMT and expected to contain information about {it important nodes} in the network. (C) The degenerate part with $zero$ eigenvalue, which fluctuates around RMT predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.