Phase-Sensitive Probes of Nuclear Polarization in Spin-Blockaded Transport


الملخص بالإنكليزية

Spin-blockaded quantum dots provide a unique setting for studying nuclear-spin dynamics in a nanoscale system. Despite recent experimental progress, observing phase-sensitive phenomena in nuclear spin dynamics remains challenging. Here we point out that such a possibility opens up in the regime where hyperfine exchange directly competes with a purely electronic spin-flip mechanism such as the spin-orbital interaction. Interference between the two spin-flip processes, resulting from long-lived coherence of the nuclear-spin bath, modulates the electron-spin-flip rate, making it sensitive to the transverse component of nuclear polarization. In a system repeatedly swept through a singlet-triplet avoided crossing, nuclear precession is manifested in oscillations and sign reversal of the nuclear-spin pumping rate as a function of the waiting time between sweeps. This constitutes a purely electrical method for the detection of coherent nuclear-spin dynamics.

تحميل البحث