In this paper, we study the asymptotic posterior distribution of linear functionals of the density. In particular, we give general conditions to obtain a semiparametric version of the Bernstein-Von Mises theorem. We then apply this general result to nonparametric priors based on infinite dimensional exponential families. As a byproduct, we also derive adaptive nonparametric rates of concentration of the posterior distributions under these families of priors on the class of Sobolev and Besov spaces.