Quasifission and difference in formation of evaporation residues in the $^{16}$O+$^{184}$W and $^{19}$F+$^{181}$Ta reactions


الملخص بالإنكليزية

The excitation functions of capture, complete fusion, and evaporation residue formation in the $^{16}$O+$^{184}$W and $^{19}$F+$^{181}$Ta reactions leading to the same $^{200}$Pb compound nucleus has been studied theoretically to explain the experimental data showing more intense yield of evaporation residue in the former reaction in comparison with that in the latter reaction. The observed difference is explained by large capture cross section in the former and by increase of the quasifission contribution to the yield of fission-like fragments in the $^{19}$F+$^{181}$Ta reaction at large excitation energies. The probability of compound nucleus formation in the $^{16}$O+$^{184}$W reaction is larger but compound nuclei formed in both reactions have similar angular momentum ranges at the same excitation energy. The observed decrease of evaporation residue cross section normalized to the fusion cross section in the $^{19}$F+$^{181}$Ta reaction in comparison with the one in the $^{16}$O+$^{184}$W reaction at high excitation energies is explained by the increase of hindrance in the formation of compound nucleus connected with more quick increase of the quasifission contribution in the $^{19}$F induced reaction. The spin distributions of the evaporation residue cross sections for the two reactions are also presented.

تحميل البحث