This paper develops an analogy between the cycle structure of, on the one hand, random permutations with cycle lengths restricted to lie in an infinite set $S$ with asymptotic density $sigma$ and, on the other hand, permutations selected according to the Ewens distribution with parameter $sigma$. In particular we show that the asymptotic expected number of cycles of random permutations of $[n]$ with all cycles even, with all cycles odd, and chosen from the Ewens distribution with parameter 1/2 are all ${1 over 2} log n + O(1)$, and the variance is of the same order. Furthermore, we show that in permutations of $[n]$ chosen from the Ewens distribution with parameter $sigma$, the probability of a random element being in a cycle longer than $gamma n$ approaches $(1-gamma)^sigma$ for large $n$. The same limit law holds for permutations with cycles carrying multiplicative weights with average $sigma$. We draw parallels between the Ewens distribution and the asymptotic-density case and explain why these parallels should exist using permutations drawn from weighted Boltzmann distributions.