Investigating the Disk-Corona Relation in a Blue AGN Sample


الملخص بالإنكليزية

We compile a blue AGN sample from SDSS and investigate the ratio of hard X-ray to bolometric luminosity in dependence on Eddington ratio and black hole mass. Our sample comprises 240 radio-quiet Seyfert 1 galaxies and QSOs. We find that the fraction of hard X-ray luminosity (log$(L_{rm 2-10 kev}/L_{rm bol})$) decreases with the increase of Eddington ratio. We also find that the fraction of hard X-ray luminosity is independent on the black hole mass for the radio-quiet AGNs. The relation of log$(L_{rm 2-10 kev}/L_{rm bol})$ decreasing with increasing Eddington ratio indicates that X-ray bolometric correction is not a constant, from a larger sample supporting the results of Vasudevan & Fabian (2007). We interpret our results by the disk corona evaporation/condensation model (Meyer et al. cite{me200}; Liu et al. 2002a; Liu et al. 2007). In the frame of this model, the Compton cooling becomes efficient in cooling of the corona at high accretion rate (in units of Eddington rate), leading to condensation of corona gas to the disk. Consequently, the relative strength of corona to the disk becomes weaker at higher Eddington ratio. Therefore, the fraction of hard X-ray emission to disk emission and hence to the bolometric emission is smaller at higher Eddington ratio. The independence of the fraction of hard X-ray luminosity on the mass of the black hole can also be explained by the disk corona model since the corona structure and luminosity (in units of Eddington luminosity) are independent on the mass of black holes.

تحميل البحث