Error-Tolerating Bell Inequalities via Graph States


الملخص بالإنكليزية

We investigate the Bell inequalities derived from the graph states with violations detectable even with the presence of noises, which generalizes the idea of error-correcting Bell inequalities [Phys. Rev. Lett. 101, 080501 (2008)]. Firstly we construct a family of valid Bell inequalities tolerating arbitrary $t$-qubit errors involving $3(t+1)$ qubits, e.g., 6 qubits suffice to tolerate single qubit errors. Secondly we construct also a single-error-tolerating Bell inequality with a violation that increases exponentially with the number of qubits. Exhaustive computer search for optimal error-tolerating Bell inequalities based on graph states on no more than 10 qubits shows that our constructions are optimal for single- and double-error tolerance.

تحميل البحث