A recipe theorem for the topological Tutte polynomial of Bollobas and Riordan


الملخص بالإنكليزية

In [A polynomial invariant of graphs on orientable surfaces, Proc. Lond. Math. Soc., III Ser. 83, No. 3, 513-531 (2001)] and [A polynomial of graphs on surfaces, Math. Ann. 323, 81-96 (2002)], Bollobas and Riordan generalized the classical Tutte polynomial to graphs cellularly embedded in surfaces, i.e. ribbon graphs, thus encoding topological information not captured by the classical Tutte polynomial. We provide a `recipe theorem for their new topological Tutte polynomial, R(G). We then relate R(G) to the generalized transition polynomial Q(G) via a medial graph construction, thus extending the relation between the classical Tutte polynomial and the Martin, or circuit partition, polynomial to ribbon graphs. We use this relation to prove a duality property for R(G) that holds for both oriented and unoriented ribbon graphs. We conclude by placing the results of Chumutov and Pak [The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs, Moscow Mathematical Journal 7(3) (2007) 409-418] for virtual links in the context of the relation between R(G) and Q(R).

تحميل البحث