Keplerian frequency of uniformly rotating neutron stars and quark stars


الملخص بالإنكليزية

We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses we obtain C_QS = 1.15 kHz, and the value of C_QS is not very sensitive to the crust mass. All our Cs are significantly larger than the analytic value from the relativistic Roche model, C_Roche = 1.00 kHz. For 0.5 M_sun < M < 0.9 M_max,stat, the equatorial radius of Keplerian configuration of mass M, R_K(M), is, to a very good approximation, proportional to the radius of the non-rotating star of the same mass, R_K(M) = aR(M), with a_NS approx a_QS approx 1.44. The value of a_QS is very weakly dependent on the mass of the crust of the quark star. Both as are smaller than the analytic value a_Roche = 1.5 from the relativistic Roche model.

تحميل البحث