(abridged) Aims: To study turbulent transport coefficients that describe the evolution of large-scale magnetic fields in turbulent convection. Methods: We use the test field method together with 3D numerical simulations of turbulent convection with shear and rotation to compute turbulent transport coefficients describing the evolution of large-scale magnetic fields in mean-field theory in the kinematic regime. 1D mean-field models are used with the derived turbulent transport coefficients to compare with direct simulations. Results: The alpha-effect increases monotonically as rotation increases. Turbulent diffusivity, eta_t, is proportional to the square of the turbulent vertical velocity. Whereas eta_t decreases approximately inversely proportional to the wavenumber of the field, the alpha-effect and turbulent pumping show a more complex behaviour. In the presence of shear and no rotation a small alpha-effect is induced which does not seem to show any consistent trend as a function of shear. If the shear is large enough, this small alpha is able to excite a dynamo in the mean-field model. The coefficient responsible for driving the shear-current effect shows several sign changes as a function of depth but is also able to contribute to dynamo action in the mean-field model. The growth rates in these cases are well below those in direct simulations suggesting that an incoherent alpha-shear dynamo may also act in them. If both rotation and shear are present, the alpha-effect is more pronounced. The combination of the shear-current and Omega x J-effects is also stronger than in the case of shear only, but subdominant to the alpha-shear dynamo. The results of direct simulations are consistent with mean-field models where all of these effects are taken into account without the need to invoke incoherent effects.