Vortex invariants and toric manifolds


الملخص بالإنكليزية

We consider the symplectic vortex equations for a linear Hamiltonian torus action. We show that the associated genus zero moduli space itself is homotopic (in the sense of a homotopy of regular G-moduli problems) to a toric manifold with combinatorial data directly obtained from the original torus action. This allows to view the wall crossing formula of Cieliebak and Salamon for the computation of vortex invariants as a consequence of a generalized Jeffrey-Kirwan localization formula for integrals over symplectic quotients.

تحميل البحث