Magnetic order in CaFe1-xCoxAsF (x = 0, 0.06, 0.12) superconductor compounds


الملخص بالإنكليزية

A Neutron Powder Diffraction (NPD) experiment has been performed to investigate the structural phase transition and magnetic order in CaFe1-xCoxAsF superconductor compounds (x = 0, 0.06, 0.12). The parent compound CaFeAsF undergoes a tetragonal to orthorhombic phase transition at 134(3) K, while the magnetic order in form of a spin-density wave (SDW) sets in at 114(3) K. The antiferromagnetic structure of the parent compound has been determined with a unique propagation vector k = (1,0,1) and the Fe saturation moment of 0.49(5)uB aligned along the long a-axis. With increasing Co doping, the long range antiferromagnetic order has been observed to coexist with superconductivity in the orthorhombic phase of the underdoped CaFe0.94Co0.06AsF with a reduced Fe moment (0.15(5)uB). Magnetic order is completely suppressed in optimally doped CaFe0.88Co0.12AsF. We argue that the coexistence of SDW and superconductivity might be related to mesoscopic phase separation.

تحميل البحث