Single crystals of BaRh_2As_2 have been synthesized from a Pb flux. We present the room temperature crystal structure, single crystal x-ray diffraction measurements as a function of temperature T, anisotropic magnetic susceptibility chi versus T, electrical resistivity in the ab-plane rho versus T, Hall coefficient versus T and magnetic field H, and heat capacity C versus T measurements on the crystals. The single crystal structure determination confirms that BaRh_2As_2 forms in the tetragonal ThCr_2Si_2 type structure (space group I4/mmm) with lattice parameters a = b = 4.0564(6)AA and c = 12.797(4) AA. Band structure calculations show that BaRh_2As_2 should be metallic with a small density of states at the Fermi energy N(E_ F) = 3.49 states/eV f.u. (where f.u. equiv formula unit) for both spin directions. rho(T) data in the ab-plane confirm that the material is indeed metallic with a residual resistivity rho(2K) = 29 mu Omega cm, and with a residual resistivity ratio rho(310K)/rho(2K) = 5.3. The observed chi(T) is small (sim 10^{-5} cm^3/mol) and weakly anisotropic with chi_{ab}/chi_ c approx 2. The C(T) data indicate a small density of states at the Fermi energy with the low temperature Sommerfeld coefficient gamma = 4.7(9) mJ/mol K^2. There are no indications of superconductivity, spin density wave, or structural transitions between 2K and 300K. We compare the calculated density of states versus energy of BaRh_2As_2 with that of BaFe_2As_2.