Gauss hypergeometric functions with a dihedral monodromy group can be expressed as elementary functions, since their hypergeometric equations can be transformed to Fuchsian equations with cyclic monodromy groups by a quadratic change of the argument variable. The paper presents general elementary expressions of these dihedral hypergeometric functions, involving finite bivariate sums expressible as terminating Appells F2 or F3 series. Additionally, trigonometric expressions for the dihedral functions are presented, and degenerate cases (logarithmic, or with the monodromy group Z/2Z) are considered.