In this dissertation, I present a general method for studying quantum error correction codes (QECCs). This method not only provides us an intuitive way of understanding QECCs, but also leads to several extensions of standard QECCs, including the operator quantum error correction (OQECC), the entanglement-assisted quantum error correction (EAQECC). Furthermore, we can combine both OQECC and EAQECC into a unified formalism, the entanglement-assisted operator formalism. This provides great flexibility of designing QECCs for different applications. Finally, I show that the performance of quantum low-density parity-check codes will be largely improved using entanglement-assisted formalism.