Phylogenetic Profiles as a Unified Framework for Measuring Protein Structure, Function and Evolution


الملخص بالإنكليزية

The sequence of amino acids in a protein is believed to determine its native state structure, which in turn is related to the functionality of the protein. In addition, information pertaining to evolutionary relationships is contained in homologous sequences. One powerful method for inferring these sequence attributes is through comparison of a query sequence with reference sequences that contain significant homology and whose structure, function, and/or evolutionary relationships are already known. In spite of decades of concerted work, there is no simple framework for deducing structure, function, and evolutionary (SF&E) relationships directly from sequence information alone, especially when the pair-wise identity is less than a threshold figure ~25% [1,2]. However, recent research has shown that sequence identity as low as 8% is sufficient to yield common structure/function relationships and sequence identities as large as 88% may yet result in distinct structure and function [3,4]. Starting with a basic premise that protein sequence encodes information about SF&E, one might ask how one could tease out these measures in an unbiased manner. Here we present a unified framework for inferring SF&E from sequence information using a knowledge-based approach which generates phylogenetic profiles in an unbiased manner. We illustrate the power of phylogenetic profiles generated using the Gestalt Domain Detection Algorithm Basic Local Alignment Tool (GDDA-BLAST) to derive structural domains, functional annotation, and evolutionary relationships for a host of ion-channels and human proteins of unknown function. These data are in excellent accord with published data and new experiments. Our results suggest that there is a wealth of previously unexplored information in protein sequence.

تحميل البحث