In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), there are maximal mass (density), maximal entropy (density) and maximal temperature configurations, they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case, does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in $ 4le d le 7$, while in $d geq 8$, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum and then increases to its asymptotic value monotonically. The reason causing the difference is discussed.