We study the Cauchy problem with periodic initial data for the forward-backward heat equation defined by the J-self-adjoint linear operator L depending on a small parameter. The problem has been originated from the lubrication approximation of a viscous fluid film on the inner surface of the rotating cylinder. For a certain range of the parameter we rigorously prove the conjecture, based on the numerical evidence, that the set of eigenvectors of the operator $L$ does not form a Riesz basis in $L^2 (-pi,pi)$. Our method can be applied to a wide range of the evolutional problems given by $PT-$symmetric operators.