Current star formation in early-type galaxies and the K+A phenomenon


الملخص بالإنكليزية

We present the results of an effort to identify and study a sample of the likely progenitors of elliptical (E) and lenticular (S0) K+A galaxies. To achieve this, we have searched a sample ~11,000 nearby (m(r)<16) early-type galaxies selected by morphology from the Sloan Digital Sky Survey (SDSS) Main spectroscopic sample for actively star-forming E and S0 galaxies. Using emission line ratios and visual inspection of SDSS g-band images, we have identified 335 galaxies from the SDSS Fourth Data Release (DR4) as actively star-forming E and S0 galaxies. These galaxies make up about 3% of the total early-type sample and less than 1% of all Main galaxies with m(r)<16. We also identified a sample of ~400 K+A galaxies from DR4 with m(r)<16; more than half of these are E and S0 galaxies. We find that star-forming early-type galaxies and K+A galaxies have similar mass distributions; they are on average less massive than typical early-type galaxies but more massive than the average star-forming galaxy. Both of these types of galaxies are found in higher fractions among all galaxies in lower density environments. The fractions of star-forming E and S0 galaxies and E and S0 K+A galaxies depend on environment in nearly the same way. Model spectra fit to the stellar continua of the star-forming E and S0 galaxies showed that their properties are consistent with star formation episodes of <1 Gyr in duration. The modelling results imply that on average, the star formation episodes will increase the stellar masses by about 4%. There is also evidence that the star-forming regions within these galaxies are rotationally supported.

تحميل البحث