We present a measurement protocol for a flux qubit coupled to a dc-Superconducting QUantum Interference Device (SQUID), representative of any two-state system with a controllable coupling to an harmonic oscillator quadrature, which consists of two steps. First, the qubit state is imprinted onto the SQUID via a very short and strong interaction. We show that at the end of this step the qubit dephases completely, although the perturbation of the measured qubit observable during this step is weak. In the second step, information about the qubit is extracted by measuring the SQUID. This step can have arbitrarily long duration, since it no longer induces qubit errors.