Unparticle Induced Baryon Number Violating Nucleon Decays


الملخص بالإنكليزية

We study baryon number violating nucleon decays induced by unparticle interactions with the standard model particles. We find that the lowest dimension operators which cause nucleon decays can arise at dimension 6 + (d_s-3/2) with the unparticles being a spinor of dimension d_s=d_U +1/2. For scalar and vector unparticles of dimension d_U, the lowest order operatoers arise at 6+d_U and 7+d_U dimensions,respectively. Comparing the spinor unparticle induced n to O^s_U and experimental bound on invisible decay of a neutron from KamLAND, we find that the scale for unparticle physics is required to be larger than 10^{10} GeV for d_U < 2 if the couplings are set to be of order one. For scalar and vector unparticles, the dominant baryon number violating decay modes are nto bar u + O_U (O^mu_U) and p to e^+ + O_U (O^mu_U). The same experimental bound puts the scales for scalar and vector unparticle to be larger than 10^{7} and 10^{5} GeV for d_U <2 with couplings set to be of order one. Data on, p to e^+ invisible, puts similar constraints on unparticle interactions.

تحميل البحث