In this paper we raise the question of how to compress sparse graphs. By introducing the idea of redundancy, we find a way to measure the overlap of neighbors between nodes in networks. We exploit symmetry and information by making use of the overlap in neighbors and analyzing how information is reduced by shrinking the network and using the specific data structure we created, we generalize the problem of compression as an optimization problem on the possible choices of orbits. To find a reasonably good solution to this problem we use a greedy algorithm to determine the orbit of symmetry identifications, to achieve compression. Some example implementations of our algorithm are illustrated and analyzed.