Strong lensing probability in TeVeS theory


الملخص بالإنكليزية

We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with $Omega_b=0.04$ and $Omega_Lambda=0.5$ and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter-Heavens-Jimenez, 2004) determined from SDSS data release one and Fontana (Fontana et al., 2006) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses by Singular Isothermal Sphere (SIS) galaxy halos in LCDM (lambda cold dark matter) with Schechter-fit velocity function, and the observational results of the well defined combined sample of Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function $mu(x)=x/(1+x)$ combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

تحميل البحث