The inverse inertia problem for graphs


الملخص بالإنكليزية

Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n x n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, and investigate restrictions on the inertia set of any graph.

تحميل البحث