High-pressure infrared spectroscopy: tuning of the low-energy excitations in correlated electron systems


الملخص بالإنكليزية

We have extended the range of the high-pressure optical spectroscopy to the far-infrared region keeping the accuracy of ambient-pressure experiments. The newly-developed method offers a powerful tool for the study of pressure-induced phase transitions and electronic-structural changes in correlated electron systems. The novel-type optical pressure cell, equipped with large free-aperture diamond window, allows the measurement of optical reflectivity down to $omegaapprox20-30$ cm$^{-1}$ for hydrostatic pressures up to $papprox26$ kbar. The efficiency of the technique is demonstrated by the investigation of the 2-dimensional charge-density-wave 1$T$-TaS$_2$ whose electronic structure shows high sensitivity to external pressure. The room-temperature semi-metallic phase of 1$T$-TaS$_2$ is effectively extended by application of pressure and stabilized as the ground state above $p=14$ kbar. The corresponding fully incoherent low-energy optical conductivity is almost temperature independent below T=300 K. For intermediate pressures, the onset of the low-temperature insulating phase is reflected by the sudden drop of the reflectivity and by the emergence of sharp phonon resonances.

تحميل البحث