Measuring the Broad-band X-Ray Spectrum from 400 eV to 40 keV in the Southwest Part of the Supernova Remnant RX J1713.7-3946


الملخص بالإنكليزية

We report on results from Suzaku broadband X-ray observations of the southwest part of the Galactic supernova remnant (SNR) RX J1713.7-3946 with an energy coverage of 0.4-40 keV. The X-ray spectrum, presumably of synchrotron origin, is known to be completely lineless, making this SNR ideally suited for a detailed study of the X-ray spectral shape formed through efficient particle acceleration at high speed shocks. With a sensitive hard X-ray measurement from the HXD PIN on board Suzaku, we determine the hard X-ray spectrum in the 12--40 keV range to be described by a power law with photon index Gamma = 3.2+/- 0.2, significantly steeper than the soft X-ray index of Gamma = 2.4+/- 0.05 measured previously with ASCA and other missions. We find that a simple power law fails to describe the full spectral range of 0.4-40 keV and instead a power-law with an exponential cutoff with hard index Gamma = 1.50+/- 0.09 and high-energy cutoff epsilon_c = 1.2+/- 0.3 keV formally provides an excellent fit over the full bandpass. If we use the so-called SRCUT model, as an alternative model, it gives the best-fit rolloff energy of epsilon_{roll} = 0.95+/- 0.04 keV. Together with the TeV gamma-ray spectrum ranging from 0.3 to 100 TeV obtained recently by HESS observations, our Suzaku observations of RX J1713.7-3946 provide stringent constraints on the highest energy particles accelerated in a supernova shock.

تحميل البحث