Good reductions of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic. Part I


الملخص بالإنكليزية

We prove the existence of good smooth integral models of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic $(0,p)$. As a first application we provide a smooth solution (answer) to a conjecture (question) of Langlands for Shimura varieties of Hodge type. As a second application we prove the existence in arbitrary unramified mixed characteristic $(0,p)$ of integral canonical models of projective Shimura varieties of Hodge type with respect to h--hyperspecial subgroups as pro-etale covers of Neron models; this forms progress towards the proof of conjectures of Milne and Reimann. Though the second application was known before in some cases, its proof is new and more of a principle.

تحميل البحث