Superfluidity of fermions with repulsive on-site interaction in an anisotropic optical lattice near a Feshbach resonance


الملخص بالإنكليزية

We present a numerical study on ground state properties of a one-dimensional (1D) general Hubbard model (GHM) with particle-assisted tunnelling rates and repulsive on-site interaction (positive-U), which describes fermionic atoms in an anisotropic optical lattice near a wide Feshbach resonance. For our calculation, we utilize the time evolving block decimation (TEBD) algorithm, which is an extension of the density matrix renormalization group and provides a well-controlled method for 1D systems. We show that the positive-U GHM, when hole-doped from half-filling, exhibits a phase with coexistence of quasi-long-range superfluid and charge-density-wave orders. This feature is different from the property of the conventional Hubbard model with positive-U, indicating the particle-assisted tunnelling mechanism in GHM brings in qualitatively new physics.

تحميل البحث