Pulsar kicks by anisotropic neutrino emission from quark matter


الملخص بالإنكليزية

We discuss an acceleration mechanism for pulsars out of their supernova remnants based on asymmetric neutrino emission from quark matter in the presence of a strong magnetic field. The polarized electron spin fixes the neutrino emission from the direct quark Urca process in one direction along the magnetic field. We calculate the magnetic field strength which is required to polarize the electron spin as well as the required initial proto-neutron star temperature for a successfull acceleration mechanism. In addition we discuss the neutrino mean free paths in quark as well as in neutron matter which turn out to be very small. Consequently, the high neutrino interaction rates will wash out the asymmetry in neutrino emission. As a possible solution to this problem we take into account effects from colour superconductivity.

تحميل البحث