We study a simple model of N-component fermions with contact interactions which describes fermionic atoms with N=2F+1 hyperfine states loaded into a one-dimensional optical lattice. We show by means of analytical and numerical approaches that, for attractive interaction, a quasi-long-range molecular superfluid phase emerges at low density. In such a phase, the pairing instability is strongly suppressed and the leading instability is formed from bound-states made of N fermions. At small density, the molecular superfluid phase is generic and exists for a wide range of attractive contact interactions without an SU(N) symmetry between the hyperfine states.